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The neuron

» The sigmoid equation is what is typically used as a transfer
function between neurons. It is similar to the step function,
but is continuous and differentiable.
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» One useful property of this transfer function is the simplicity
of computing it's derivative. Let's do that now...
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The derivative of the sigmoid transfer function
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Single input neuron
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In the above figure (2) you can see a diagram representing a single
neuron with only a single input. The equation defining the figure is:

0 = o(éw)



Single input neuron
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In the above figure (2) you can see a diagram representing a single
neuron with only a single input. The equation defining the figure is:

O=o0(fw+0)



Multiple input neuron
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Figure: A Multiple Input Neuron

Figure 3 is the diagram representing the following equation:

O = o(wi1&1 + w2 + w3&s3 + 6)



A neural network

@ @ @
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The back propagation algorithm

Notation

> x . Input to node j of layer ¢

v

Wﬁ : Welght from layer £ — 1 node i to layer £ node j
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The back propagation algorithm

Notation
> -E . Input to node j of layer ¢
> Wf Welght from layer £ — 1 node i to layer £ node j
» o(x) = 1+e = - Sigmoid Transfer Function
> 95 Bias of node j of layer ¢
> Oj : Output of node j in layer ¢

» t; : Target value of node j of the output layer



The error calculation

Given a set of training data points tx and output layer output Oy
we can write the error as

= % Z(Ok — tk)2

We let the error of the network for a single training iteration be

denoted by E. We want to calculate aW@, the rate of change of

the error with respect to the given connective weight, so we can
minimize it.

Now we consider two cases: The node is an output node, or it is in
a hidden layer...
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Output layer node
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For notation purposes | will define 6, to be the expression
(O — t,)Ok(1 — Ok), so we can rewrite the equation above as

where
Ok = Ok(l — (’)k)(Ok — tk)
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Hidden layer node
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Hidden layer node

OF
oWy

Oj(1 = 0))0; Y (Ok — 1) Ok(1 — Ok) Wy
keK

But, recalling our definition of d, we can write this as

OE
W 0:0;(1 - 0j) Z Ok Wik
L keK

Similar to before we will now define all terms besides the O; to be

dj, so we have
OE
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— 0;5;



How weights affect errors

For an output layer node k € K

OE

OWik = O

where
Ok = Ok(l — Ok)(Ok — tk)
For a hidden layer node j € J

OE
oW;;

= 0;5;

where

0; = O0j(1=07) > kW
keK



What about the bias?

If we incorporate the bias term 6 into the equation you will find

that 50 90
T

and because 06/06 = 1 we view the bias term as output from a
node which is always one.



What about the bias?

If we incorporate the bias term 6 into the equation you will find

that 50 90
T

and because 06/06 = 1 we view the bias term as output from a
node which is always one.

This holds for any layer £ we are concerned with, a substitution
into the previous equations gives us that

OF
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(because the Oy is replacing the output from the “previous layer”)



The back propagation algorithm

1.

Run the network forward with your input data to get the
network output
For each output node compute

0 = Ok(l — (’)k)((’)k — tk)
For each hidden node calulate

8= 0j(1=05) > 6k Wi

keK
Update the weights and biases as follows
Given
AW = —0,0p_1
AfO = —T](Sg
apply
W+ AW —- W



