
CS224n研究热点2 词语义项的线性代数结构与词义消歧
词向量本身无法解决一词多义的问题,比如: 这里的tie可能表示球赛的平局,也可能表示领带,还可能表示绳子打结。那它的词向量究竟在哪里呢? 虽然相似的词被映射到邻近的位置,但该论文证明词向量是所有义项的平均: 它被映射到这些词语的中央,这有什...
词向量本身无法解决一词多义的问题,比如: 这里的tie可能表示球赛的平局,也可能表示领带,还可能表示绳子打结。那它的词向量究竟在哪里呢? 虽然相似的词被映射到邻近的位置,但该论文证明词向量是所有义项的平均: 它被映射到这些词语的中央,这有什...
如何表示一个词语的意思 先来看看如何定义“意思”的意思,英文中meaning代表人或文字想要表达的idea。这是个递归的定义,估计查询idea词典会用meaning去解释它。 中文中“意思”的意思更加有意思: 他说:“她这个人真有意思(fu...
这门课会不定期地让TA介绍一些课程相关的最前沿研究,与课程进度并非流畅衔接,所以单独做笔记。这次是第二节课中场休息时,由Danqi Chen带来的五分钟小讲座: 句子Embedding动机 虽然这节课一直在讲词向量可以编码词的意思,但自然语...
这是斯坦福CS224n的第一篇笔记,也是第一次系统地学习用深度学习来做自然语言处理。本文还整理了CS224n的全部视频课件笔记,汇总下载。 虽然深度学习已经席卷各大应用领域,大量开源工具让谁都能跳过理论基础速成demo专家。我却一直按部就班...
最后一次练习,对应课程结尾的对数线性模型框架;于是又拿下一门课。在这次练习中,我们将使用感知机算法训练一个GLM应用到命名实体识别上。对输入实例,GLM使用如下三个组件完成解码: 一个函数生成所有可能的结果 一个全局特征函数 一个参数向量 ...
说是机器翻译,其实只涉及最最简单的两个模型:IBM1和2以及启发式改进,用来做文本对齐。代码见文末,包括附加题在内全部达到了预期目标。 文本对齐 文本对齐是这么一个问题,将母语翻译为外语时,给定一个长l的母语句子和长度m,估计一个长m的外语...
Micheal Collins在Coursera上的自然语言处理公开课,第二次任务。自然语言中的歧义令人忍俊不禁,只要你或者你的模型脑洞足够大。 语料库来自WSJ,但并不是乔姆斯基范式: 因为乔姆斯基范式中一元rule必须是叶子节点,修正方...
最近高产似母猪,写了个基于AP的中文分词器,在Bakeoff-05的MSR语料上F值有96.11%。最重要的是,只训练了5个迭代;包含语料加载等IO操作在内,整个训练一共才花费23秒。应用裁剪算法去掉模型中80%的特征后,F值才下降不到0....
译自Matthew的《A Good Part-of-Speech Tagger in about 200 Lines of Python》,本文用最精简的代码演示了如何写一个基于感知机的高性能词性标注器。以下是正文: 自然语言处理的最新技术...
谈起简繁转换,许多人以为是小意思,按字转换就行了。事实上,汉语历史悠久,地域复杂,发展至今在字符级别存在“一简对多繁”和“一繁对多简”,在词语级别上存在“简繁分歧词”,在港澳台等地则存在“字词习惯不同”的情况。为此,HanLP新增了“简体”...