![]()
需求
在检索系统中,遇到了分组统计(Grouping/GroupBy)的需求,比如将搜索结果按照栏目分类,统计每个栏目下各有多少条结果。以前的做法很愚蠢,先发起一次search统计出有多少组,然后在每个组里发起一次search;这样在有N组的情况下一共执行了N+1此搜索,效率低下。
改进
最近发现Lucene提供了分组的功能,是通过Collector实现的,最多可以在2次search的时候得出结果,如果内存够用,CachingCollector还可以节约一次查询。
两次检索
第一次
第一次的目的是收集符合条件的组,创建一个FirstPassGroupingCollector送入search接口即可。在此处使用CachingCollector对其cache的话,可以节省一次查询:
TermFirstPassGroupingCollector c1 = new TermFirstPassGroupingCollector("catalog", groupSort, topNGroups);
boolean cacheScores = true;
double maxCacheRAMMB = 16.0;
CachingCollector cachedCollector = CachingCollector.create(c1, cacheScores, maxCacheRAMMB);
searcher.search(query, cachedCollector);
第二次
第二次的目的是收集每个组里面符合条件的文档,此时利用第一次的分组结果创建TermSecondPassGroupingCollector,并执行/replay搜索。
完整实例
package com.hankcs;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.TextField;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.queryparser.classic.QueryParser;
import org.apache.lucene.search.*;
import org.apache.lucene.search.grouping.GroupDocs;
import org.apache.lucene.search.grouping.SearchGroup;
import org.apache.lucene.search.grouping.TopGroups;
import org.apache.lucene.search.grouping.term.TermAllGroupsCollector;
import org.apache.lucene.search.grouping.term.TermFirstPassGroupingCollector;
import org.apache.lucene.search.grouping.term.TermSecondPassGroupingCollector;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.RAMDirectory;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.Version;
import java.util.Collection;
/**
* 演示faceting
*
* @author hankcs
*/
public class FacetingDemo
{
public static void main(String[] args) throws Exception
{
// Lucene Document的主要域名
String mainFieldName = "text";
// Lucene版本
Version ver = Version.LUCENE_48;
// 实例化Analyzer分词器
Analyzer analyzer = new StandardAnalyzer(ver);
Directory directory;
IndexWriter writer;
IndexReader reader;
IndexSearcher searcher;
//索引过程**********************************
//建立内存索引对象
directory = new RAMDirectory();
//配置IndexWriterConfig
IndexWriterConfig iwConfig = new IndexWriterConfig(ver, analyzer);
iwConfig.setOpenMode(IndexWriterConfig.OpenMode.CREATE_OR_APPEND);
writer = new IndexWriter(directory, iwConfig);
for (int i = 0; i < 100; ++i)
{
Document doc = new Document();
doc.add(new TextField(mainFieldName, "Banana is sweet " + i, Field.Store.YES));
doc.add(new TextField("catalog", "fruit", Field.Store.YES));
writer.addDocument(doc);
}
for (int i = 0; i < 50; ++i)
{
Document doc = new Document();
doc.add(new TextField(mainFieldName, "Juice is sweet " + i, Field.Store.YES));
doc.add(new TextField("catalog", "drink", Field.Store.YES));
writer.addDocument(doc);
}
for (int i = 0; i < 25; ++i)
{
Document doc = new Document();
doc.add(new TextField(mainFieldName, "Hankcs is here " + i, Field.Store.YES));
doc.add(new TextField("catalog", "person", Field.Store.YES));
writer.addDocument(doc);
}
writer.close();
//搜索过程**********************************
//实例化搜索器
reader = DirectoryReader.open(directory);
searcher = new IndexSearcher(reader);
String keyword = "sweet";
//使用QueryParser查询分析器构造Query对象
QueryParser qp = new QueryParser(ver, mainFieldName, analyzer);
Query query = qp.parse(keyword);
System.out.println("Query = " + query);
//搜索相似度最高的5条记录并且分组
int topNGroups = 10; // 每页需要多少个组
int groupOffset = 0; // 起始的组
boolean fillFields = true;
Sort docSort = Sort.RELEVANCE; // groupSort用于对组进行排序,docSort用于对组内记录进行排序,多数情况下两者是相同的,但也可不同
Sort groupSort = docSort;
int docOffset = 0; // 用于组内分页,起始的记录
int docsPerGroup = 2;// 每组返回多少条结果
boolean requiredTotalGroupCount = true; // 是否需要计算总的组的数量
// 如果需要对Lucene的score进行修正,则需要重载TermFirstPassGroupingCollector
TermFirstPassGroupingCollector c1 = new TermFirstPassGroupingCollector("catalog", groupSort, topNGroups);
boolean cacheScores = true;
double maxCacheRAMMB = 16.0;
CachingCollector cachedCollector = CachingCollector.create(c1, cacheScores, maxCacheRAMMB);
searcher.search(query, cachedCollector);
Collection<SearchGroup<BytesRef>> topGroups = c1.getTopGroups(groupOffset, fillFields);
if (topGroups == null)
{
// No groups matched
return;
}
Collector secondPassCollector = null;
boolean getScores = true;
boolean getMaxScores = true;
// 如果需要对Lucene的score进行修正,则需要重载TermSecondPassGroupingCollector
TermSecondPassGroupingCollector c2 = new TermSecondPassGroupingCollector("catalog", topGroups, groupSort, docSort, docsPerGroup, getScores, getMaxScores, fillFields);
// 是否需要计算一共有多少个分类,这一步是可选的
TermAllGroupsCollector allGroupsCollector = null;
if (requiredTotalGroupCount)
{
allGroupsCollector = new TermAllGroupsCollector("catalog");
secondPassCollector = MultiCollector.wrap(c2, allGroupsCollector);
}
else
{
secondPassCollector = c2;
}
if (cachedCollector.isCached())
{
// 被缓存的话,就用缓存
cachedCollector.replay(secondPassCollector);
}
else
{
// 超出缓存大小,重新执行一次查询
searcher.search(query, secondPassCollector);
}
int totalGroupCount = -1; // 所有组的数量
int totalHitCount = -1; // 所有满足条件的记录数
int totalGroupedHitCount = -1; // 所有组内的满足条件的记录数(通常该值与totalHitCount是一致的)
if (requiredTotalGroupCount)
{
totalGroupCount = allGroupsCollector.getGroupCount();
}
System.out.println("一共匹配到多少个分类: " + totalGroupCount);
TopGroups<BytesRef> groupsResult = c2.getTopGroups(docOffset);
totalHitCount = groupsResult.totalHitCount;
totalGroupedHitCount = groupsResult.totalGroupedHitCount;
System.out.println("groupsResult.totalHitCount:" + totalHitCount);
System.out.println("groupsResult.totalGroupedHitCount:" + totalGroupedHitCount);
int groupIdx = 0;
// 迭代组
for (GroupDocs<BytesRef> groupDocs : groupsResult.groups)
{
groupIdx++;
System.out.println("group[" + groupIdx + "]:" + groupDocs.groupValue); // 组的标识
System.out.println("group[" + groupIdx + "]:" + groupDocs.totalHits); // 组内的记录数
int docIdx = 0;
// 迭代组内的记录
for (ScoreDoc scoreDoc : groupDocs.scoreDocs)
{
docIdx++;
System.out.println("group[" + groupIdx + "][" + docIdx + "]:" + scoreDoc.doc + "/" + scoreDoc.score);
Document doc = searcher.doc(scoreDoc.doc);
System.out.println("group[" + groupIdx + "][" + docIdx + "]:" + doc);
}
}
}
}
输出
Query = text:sweet 一共匹配到多少个分类: 2 groupsResult.totalHitCount:150 groupsResult.totalGroupedHitCount:150 group[1]:[66 72 75 69 74] group[1]:100 group[1][1]:0/0.573753 group[1][1]:Document<stored,indexed,tokenized<text:Banana is sweet 0> stored,indexed,tokenized<catalog:fruit>> group[1][2]:1/0.573753 group[1][2]:Document<stored,indexed,tokenized<text:Banana is sweet 1> stored,indexed,tokenized<catalog:fruit>> group[2]:[64 72 69 6e 6b] group[2]:50 group[2][1]:100/0.573753 group[2][1]:Document<stored,indexed,tokenized<text:Juice is sweet 0> stored,indexed,tokenized<catalog:drink>> group[2][2]:101/0.573753 group[2][2]:Document<stored,indexed,tokenized<text:Juice is sweet 1> stored,indexed,tokenized<catalog:drink>>
Reference
http://www.lhelper.org/newblog/?p=545
码农场