Python调用自然语言处理包HanLP
如果你是能力不足的小白,请直接使用傻瓜安装包。 能力达标的话,一句话安装pyhanlp,全自动下载安装配置,还支持升级。 pip install pyhanlp 调用方法参考项目主页:https://github.com...
如果你是能力不足的小白,请直接使用傻瓜安装包。 能力达标的话,一句话安装pyhanlp,全自动下载安装配置,还支持升级。 pip install pyhanlp 调用方法参考项目主页:https://github.com...
以前发布过HanLP的Lucene插件,后来很多人跟我说其实Solr更流行(反正我是觉得既然Solr是Lucene的子项目,那么稍微改改配置就能支持Solr),于是就抽空做了个Solr插件出来,开源在Github上,欢迎改进。 HanLP中...
谈起基于Character-Based Generative Model的中文分词方法,普遍的印象是在Bakeoff上的成绩好,对OOV的识别率高。HanLP中实现的CRF分词器其实就是这种原理的分词器,然而CRF分词缺点也是很明显的: 一...
中文分词≠自然语言处理! 中文分词只是第一步;HanLP从中文分词开始,覆盖词性标注、命名实体识别、句法分析、文本分类等常用任务,提供了丰富的API。 不同于一些简陋的分词类库,HanLP精心优化了内部数据结构和IO接口,做到了毫秒级的冷启...
本文使用Double Array Trie实现了一个性能极高的Aho Corasick自动机,应用于分词可以取得1400万字每秒,约合27MB/s的分词速度。其中词典为150万词,构建耗时1801 ms。以前就在构想将AC自动机与双数组Tr...
与基于隐马尔可夫模型的最短路径分词、N-最短路径分词相比,基于条件随机场(CRF)的分词对未登录词有更好的支持。本文(HanLP)使用纯Java实现CRF模型的读取与维特比后向解码,内部特征函数采用 双数组Trie树(Double...
通过追加-t, –textmodel参数可以输出文本格式的CRF模型文件,通过该模型文本,可以加深对条件随机场的理解或为其他应用所利用。本文旨在介绍CRF++的文本模型格式,具体读取与解码将集成到HanLP中一并开源。 训练 语...
词性标注(Part-of-Speech tagging 或POS tagging),又称词类标注或者简称标注,是指为分词结果中的每个单词标注一个正确的词性的程序,也即确定每个词是名词、动词、形容词或其他词性的过程。在汉语中,词性标注比较简单...
命名实体识别中最难的部分当属实体机构名了,这是因为机构名的组成成分十分复杂,可以是人名、地名、序数词、企业字号甚至是上级机构名。本文介绍一种基于角色标注的层叠HMM模型下中文机构名识别方法。目前代码已整合到HanLP中,即将开源。 开源项目...
命名实体识别(Named Entity Recognition)也是自然语言处理中的一个难关,特别是中文这样没有大小写等固定形态的语言。上次介绍过《实战HMM-Viterbi角色标注中国人名识别》,这次基于类似的原理,为HanLP实现中文地...