放牧代码和思想
专注自然语言处理、机器学习算法
    时间有限,只有GitHub上的issue能及时处理,大约每周末一次。另外,不要叫我楼主,谢谢。

生成式依存句法分析器的简单实现

目录

生成式句法分析指的是,生成一系列依存句法树,从它们中用特定算法挑出概率最大那一棵。句法分析中,生成模型的构建主要使用三类信息:词性信息、词汇信息和结构信息。前二类很好理解,而结构信息需要特殊语法标记,不做考虑。

本文主要利用了词汇+词性生成联合概率模型,使用最大生成树Prim算法搜索最终结果,得到了一个简单的汉语依存句法分析器。

开源项目

本文代码已集成到HanLP中开源:http://www.hankcs.com/nlp/hanlp.html

基本思路

统计词语WordA与词语WordB构成依存关系DrC的频次,词语WordA与词性TagB构成依存关系DrD的频次,词性TagA与词语WordB构成依存关系DrE的频次,词性TagA与词词性TagB构成依存关系DrF的频次。为句子中词语i与词语j生成多条依存句法边,其权值为上述四种频次的综合(主要利用词-词频次,其余的作平滑处理用)。取边的权值最大的作为唯一的边,加入有向图中。

在有向图上使用Prim最大生成树算法,计算出最大生成树,格式化输出。

模型训练

简单地统计一下清华大学语义依存网络语料,得到如下结果:

找@ 频次 54
找@##核心## 核心成分 16
找@<d> 结果事件 1
找@<f> 目的 1
找@<n> 限定 3
找@<root> 核心成分 16
找@<v> 内容 2 结果事件 2 目的 1
找@<vf> 目的 1
找@也有 结果事件 1
找@仪器 限定 1
找@前来 目的 1
找@去 目的 1
找@合作 内容 1
找@引导 结果事件 1
找@让 结果事件 1
找@进入 目的 1
找@队伍 限定 1
找@需 内容 1
找@项目 限定 1

@符号连接起两个词汇或词性,用<>括起来的表示词性,否则是词汇。如果@后面没有内容,则表示频次,否则表示一些依存关系与其出现的频次。

依存句法分析

分词标注

以“我吃米饭”为例,先进行分词与词性标注,结果:

[我/rr, 吃/v, 米饭/nf]

生成有向图

由于依存句法树中有虚根的存在,所以为其加入一个虚节点,这样一共有四个节点:

[##核心##/root,我/rr,吃/v,米饭/n]

每个节点都与另外三个构成一条有向边,一共4 * 3 = 12 条:

##核心##/root 到 我/rr : 未知 10000.0 
##核心##/root 到 吃/v : 未知 10000.0 
##核心##/root 到 米饭/n : 未知 10000.0 
我/rr 到 ##核心##/root : 核心成分 6.410175 
我/rr 到 吃/v : 施事 21.061098 经验者 28.54827 目标 33.656525 受事 37.021248 限定 43.307335 相伴体 48.00737 关系主体 53.115623 内容 53.115623 来源 64.101746 
我/rr 到 米饭/n : 限定 22.2052 施事 48.00737 受事 57.170277 目标 57.170277 经验者 64.101746 连接依存 64.101746 
吃/v 到 ##核心##/root : 核心成分 1.7917595 
吃/v 到 我/rr : 连接依存 96.688614 介词依存 107.67474 施事 107.67474 
吃/v 到 米饭/n : 限定 24.849068 
米饭/n 到 ##核心##/root : 核心成分 37.077995 
米饭/n 到 我/rr : 连接依存 113.2556 
米饭/n 到 吃/v : 受事 0.6931472

其中“未知”表示边不存在,“受事”“施事”表示依存关系,后面的小数表示权值。我对概率取了负对数,所以接下来用加法求最小生成树即可。

最小生成树

关于最小生成树的Prim算法请参考《最小生成树算法初步》,这里必须有所改动,由于虚根有且只能有一个孩子,所以虚根必须单独计算:

        // 找虚根的唯一孩子
        float minCostToRoot = Float.MAX_VALUE;
        Edge firstEdge = null;
        Edge[] edgeResult = new Edge[termList.size() - 1];
        for (Edge edge : edges[0])
        {
            if (edge == null) continue;
            if (minCostToRoot > edge.cost)
            {
                firstEdge = edge;
                minCostToRoot = edge.cost;
            }
        }

然后就是中规中矩的Prim算法:

        while (!que.isEmpty())
        {
            State p = que.poll();
            int v = p.id;
            if (used[v] || p.cost > mincost[v]) continue;
            used[v] = true;
            if (p.edge != null)
            {
                edgeResult[p.edge.from - 1] = p.edge;
            }
            for (Edge e : edges[v])
            {
                if (e == null) continue;
                if (mincost[e.from] > e.cost)
                {
                    mincost[e.from] = e.cost;
                    que.add(new State(mincost[e.from], e.from, e));
                }
            }
        }

得出最小生成树:

2 0核心成分
3 2受事
1 2施事

格式化输出

将其转为CoNLL格式输出:

1	我	我	rr	rr	_	2	施事	_	_
2	吃	吃	v	v	_	0	核心成分	_	_
3	米饭	米饭	n	n	_	2	受事	_	_

可视化

使用可视化工具展现出来:

结果评测

我没有进行严格的测试,这只是一个玩具级别的汉语依存句法分析器。先来看几个good case与bad case——

坚决惩治贪污贿赂等经济犯罪

我每天都在写程序

hankcs每天都在写程序

挖掘机技术哪家强

咬死猎人的狗

效果比较马虎,为何这么说,这是因为分词的训练语料和句法分析语料不同,且我自知此方法严重依赖词汇共现,主要是这种二元词汇生成模型无法充分利用上下文。

短一点的搜索语句可能还是有微量的利用价值。

TODO

应当采用判别式模型,导入SVM或最大熵作为权值的计算工具,然后使用最大生成树算法获取全局最优解。

知识共享许可协议 知识共享署名-非商业性使用-相同方式共享码农场 » 生成式依存句法分析器的简单实现

分享到:更多 ()

评论 17

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
  1. #4

    prim算法会产生交叉弧,最小熵算法需要改进。

    Drawsky4个月前 (07-11)回复
  2. #3

    这些知识可以用在情感分析上面么,有做情感分析的意图么。

    郑元春2年前 (2016-03-16)回复
    • 情感分析用文本分类模型居多

      hankcs2年前 (2016-03-16)回复
  3. #2

    每个依存关系的概率怎么算的?

    x2年前 (2015-09-17)回复
    • 看代码吧

      hankcs2年前 (2015-09-17)回复
      • 感谢,看了代码明白了:-log(词1到词2依存关系数/总数) 没有的话取 -log(词到词性依存关系数/总数) *10 没有的话取 -log(词性到词依存关系数/总数) *10 没有的话取 -log(词性到词性依存关系数/总数) *100

        x2年前 (2015-09-18)回复
        • 不客气,这个比例是自己拍脑袋决定的,毕竟这只是个玩具,大致反映了约束的优先级就行了

          hankcs2年前 (2015-09-19)回复
  4. #1

    你好 怎么保证依存关系的箭头不交叉

    木叶三郎3年前 (2015-04-18)回复
    • 你好,暂时没考虑,这个得在最小生成树的生成过程中做判断。或者改用Shift-Reduce Algorithm等算法,我倾向于后者。

      hankcs3年前 (2015-04-18)回复
      • 你可以把你做的依存树库标注工具发我一份吗,整个项目。

        木叶三郎3年前 (2015-04-18)回复
          • 差不多 我自己有做 做的很糟,你有做吗

            木叶三郎3年前 (2015-04-18)
          • 这个倒没有

            hankcs3年前 (2015-04-18)
          • 没有成型的工具还是蛮可惜的

            木叶三郎3年前 (2015-04-18)
          • 我没有仔细找过,我猜这个肯定有开源的实现,至少Java平台下套用一个矢量库做这么一个GUI并不难

            hankcs3年前 (2015-04-18)
          • 那个南大的不开源的,你做了很多前期工作,有个成品稍微好点感觉

            木叶三郎3年前 (2015-04-18)
          • 前期工作指的是依存句法分析吗?那么后期工作指的是可视化和人工调整的GUI?斯坦福parser里面自带了一个GUI,对可视化感兴趣的话可以去看看

            hankcs3年前 (2015-04-18)

我的开源项目

HanLP自然语言处理包基于DoubleArrayTrie的Aho Corasick自动机