放牧代码和思想
专注自然语言处理、机器学习算法
    This thing called love. Know I would've. Thrown it all away. Wouldn't hesitate.

2017年05月的文章

Hinton神经网络公开课12 Restricted Boltzmann machines (RBMs)
机器学习

Hinton神经网络公开课12 Restricted Boltzmann machines (RBMs)

阅读(10186)评论(0)

终于到了玻尔兹曼机的训练了,这种简单的模型拥有优雅的理论基础,训练起来却又慢又差,曾一度被认为不实用。这节课讲解几种高效的学习算法,以及RBM应用到协同过滤的例子。 学习目标 这是种无监督学习,只有输入向量的参与。我们想要最大化训练集中的二...

Hinton神经网络公开课8 More recurrent neural networks
机器学习

Hinton神经网络公开课8 More recurrent neural networks

阅读(5993)评论(2)

首先简要介绍Hessian-Free优化理论。这是块硬骨头,并不要求一定掌握。 在给定方向上的移动能够将误差降低多少 在训练神经网络的时候,我们想要在error surface上尽量多地下降。梯度有了之后,具体能够迈多大一步呢?以二次曲线为...

Hinton神经网络公开课7 Recurrent neural networks
机器学习

Hinton神经网络公开课7 Recurrent neural networks

阅读(6545)评论(0)

首先复习一下常见序列模型,包括BiGram、linear dynamic system和HMM。通过对简单模型的比较学习,加深对RNN的理解。 为序列建模 目的是将一个输入序列转化为一个输出序列,如机器翻译、语音识别。 当不区分输入和输出序...

我的作品

HanLP自然语言处理包《自然语言处理入门》