课上讲的太简略了,原理参考《word2vec原理推导与代码分析》。谷歌给的代码也很简陋,只有负采样,没有哈夫曼树。另外单机word2vec已经那么高效了,我质疑上TF的意义。
任务 5: Word2Vec&CBOW
这次的任务是在text8语料上训练Word2Vec skip-gram和CBOW模型,其中skip-gram训练代码已经给出,请实现CBOW的训练。
总之先把谷歌给的skip-gram代码先看一遍吧,与《word2vec原理推导与代码分析》不同,这次的实现明显规模小很多,只计算前50000个高频词:
vocabulary_size = 50000 def build_dataset(words): count = [['UNK', -1]] count.extend(collections.Counter(words).most_common(vocabulary_size - 1)) dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) data = list() unk_count = 0 for word in words: if word in dictionary: index = dictionary[word] else: index = 0 # dictionary['UNK'] unk_count = unk_count + 1 data.append(index) count[0][1] = unk_count reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return data, count, dictionary, reverse_dictionary data, count, dictionary, reverse_dictionary = build_dataset(words) print('Most common words (+UNK)', count[:5]) print('Sample data', data[:10]) del words # Hint to reduce memory.
输出
Most common words (+UNK) [['UNK', 418391], ('the', 1061396), ('of', 593677), ('and', 416629), ('one', 411764)] Sample data [5236, 3084, 12, 6, 195, 2, 3134, 46, 59, 156] data: ['anarchism', 'originated', 'as', 'a', 'term', 'of', 'abuse', 'first']
dictionary是词到id的映射。
接下来生成skip-gram训练实例:
data_index = 0 def generate_batch(batch_size, num_skips, skip_window): global data_index assert batch_size % num_skips == 0 assert num_skips <= 2 * skip_window batch = np.ndarray(shape=(batch_size), dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) span = 2 * skip_window + 1 # [ skip_window target skip_window ] buffer = collections.deque(maxlen=span) for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) for i in range(batch_size // num_skips): target = skip_window # target label at the center of the buffer targets_to_avoid = [skip_window] for j in range(num_skips): while target in targets_to_avoid: target = random.randint(0, span - 1) targets_to_avoid.append(target) batch[i * num_skips + j] = buffer[skip_window] labels[i * num_skips + j, 0] = buffer[target] buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) return batch, labels print('data:', [reverse_dictionary[di] for di in data[:8]]) for num_skips, skip_window in [(2, 1), (4, 2)]: data_index = 0 batch, labels = generate_batch(batch_size=8, num_skips=num_skips, skip_window=skip_window) print('\nwith num_skips = %d and skip_window = %d:' % (num_skips, skip_window)) print(' batch:', [reverse_dictionary[bi] for bi in batch]) print(' labels:', [reverse_dictionary[li] for li in labels.reshape(8)])
输出
with num_skips = 2 and skip_window = 1: batch: ['originated', 'originated', 'as', 'as', 'a', 'a', 'term', 'term'] labels: ['as', 'anarchism', 'originated', 'a', 'term', 'as', 'a', 'of'] with num_skips = 4 and skip_window = 2: batch: ['as', 'as', 'as', 'as', 'a', 'a', 'a', 'a'] labels: ['anarchism', 'term', 'originated', 'a', 'term', 'of', 'as', 'originated']
skip-gram是已知当前词语,预测其上下文。上面这个函数中,窗口大小为2 * skip_window + 1,针对每个窗口中心词语,生成num_skips个训练实例。实例的x是中心词语,y是随机采样的上下文词语(这个采样算法就是平均采样target = random.randint(0, span – 1),根本没有考虑到词频,负分差评),而batch_size控制最终生成多少个训练实例。
机器学习中的分类问题光给正例可不够,还得给负例。这里的负例通过负采样得到:
对应代码中的
num_sampled = 64 # Number of negative examples to sample. # Compute the softmax loss, using a sample of the negative labels each time. loss = tf.reduce_mean( tf.nn.sampled_softmax_loss(softmax_weights, softmax_biases, embed, train_labels, num_sampled, vocabulary_size))
这其实就是softmax逻辑斯谛回归,彻头彻尾的线性模型,一点都不深。
训练就是按照逻辑斯谛回归来,没什么好说的。得到embedding之后使用 t-SNE 可视化数据,据说PCA已经过气了。这一步得到:
题目
替代Skip-gram的另一种语言模型是CBOW,这是已知上下文预测当前词语的模型,请实现它。
生成训练实例
data_index = 0 def generate_batch(batch_size, bag_window): global data_index span = 2 * bag_window + 1 # [ bag_window target bag_window ] batch = np.ndarray(shape=(batch_size, span - 1), dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) buffer = collections.deque(maxlen=span) for _ in range(span): buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) for i in range(batch_size): # just for testing buffer_list = list(buffer) labels[i, 0] = buffer_list.pop(bag_window) batch[i] = buffer_list # iterate to the next buffer buffer.append(data[data_index]) data_index = (data_index + 1) % len(data) return batch, labels print('data:', [reverse_dictionary[di] for di in data[:16]]) for bag_window in [1, 2]: data_index = 0 batch, labels = generate_batch(batch_size=4, bag_window=bag_window) print('\nwith bag_window = %d:' % (bag_window)) print(' batch:', [[reverse_dictionary[w] for w in bi] for bi in batch]) print(' labels:', [reverse_dictionary[li] for li in labels.reshape(4)])
得到
data: ['anarchism', 'originated', 'as', 'a', 'term', 'of', 'abuse', 'first', 'used', 'against', 'early', 'working', 'class', 'radicals', 'including', 'the'] with bag_window = 1: batch: [['anarchism', 'as'], ['originated', 'a'], ['as', 'term'], ['a', 'of']] labels: ['originated', 'as', 'a', 'term'] with bag_window = 2: batch: [['anarchism', 'originated', 'a', 'term'], ['originated', 'as', 'term', 'of'], ['as', 'a', 'of', 'abuse'], ['a', 'term', 'abuse', 'first']] labels: ['as', 'a', 'term', 'of']
这次的输入x是多个词语(上下文),y依然是单个词语,依然需要负采样。
训练
完整的训练代码
batch_size = 128 embedding_size = 128 # Dimension of the embedding vector. bag_window = 2 # How many words to consider left and right. # We pick a random validation set to sample nearest neighbors. here we limit the # validation samples to the words that have a low numeric ID, which by # construction are also the most frequent. valid_size = 16 # Random set of words to evaluate similarity on. valid_window = 100 # Only pick dev samples in the head of the distribution. valid_examples = np.array(random.sample(range(valid_window), valid_size)) num_sampled = 64 # Number of negative examples to sample. graph = tf.Graph() with graph.as_default(), tf.device('/cpu:0'): # Input data. train_dataset = tf.placeholder(tf.int32, shape=[batch_size, bag_window * 2]) train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1]) valid_dataset = tf.constant(valid_examples, dtype=tf.int32) # Variables. embeddings = tf.Variable( tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) softmax_weights = tf.Variable( tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) softmax_biases = tf.Variable(tf.zeros([vocabulary_size])) # Model. # Look up embeddings for inputs. embeds = tf.nn.embedding_lookup(embeddings, train_dataset) # Compute the softmax loss, using a sample of the negative labels each time. loss = tf.reduce_mean( tf.nn.sampled_softmax_loss(softmax_weights, softmax_biases, tf.reduce_sum(embeds, 1), train_labels, num_sampled, vocabulary_size)) # Optimizer. optimizer = tf.train.AdagradOptimizer(1.0).minimize(loss) # Compute the similarity between minibatch examples and all embeddings. # We use the cosine distance: norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True)) normalized_embeddings = embeddings / norm valid_embeddings = tf.nn.embedding_lookup( normalized_embeddings, valid_dataset) similarity = tf.matmul(valid_embeddings, tf.transpose(normalized_embeddings)) num_steps = 100001 with tf.Session(graph=graph) as session: tf.initialize_all_variables().run() print('Initialized') average_loss = 0 for step in range(num_steps): batch_data, batch_labels = generate_batch( batch_size, bag_window) feed_dict = {train_dataset: batch_data, train_labels: batch_labels} _, l = session.run([optimizer, loss], feed_dict=feed_dict) average_loss += l if step % 2000 == 0: if step > 0: average_loss = average_loss / 2000 # The average loss is an estimate of the loss over the last 2000 batches. print('Average loss at step %d: %f' % (step, average_loss)) average_loss = 0 # note that this is expensive (~20% slowdown if computed every 500 steps) if step % 10000 == 0: sim = similarity.eval() for i in range(valid_size): valid_word = reverse_dictionary[valid_examples[i]] top_k = 8 # number of nearest neighbors nearest = (-sim[i, :]).argsort()[1:top_k + 1] log = 'Nearest to %s:' % valid_word for k in range(top_k): close_word = reverse_dictionary[nearest[k]] log = '%s %s,' % (log, close_word) print(log) final_embeddings = normalized_embeddings.eval() num_points = 400 tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) two_d_embeddings = tsne.fit_transform(final_embeddings[1:num_points + 1, :]) def plot(embeddings, labels): assert embeddings.shape[0] >= len(labels), 'More labels than embeddings' pylab.figure(figsize=(15, 15)) # in inches for i, label in enumerate(labels): x, y = embeddings[i, :] pylab.scatter(x, y) pylab.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') pylab.show() words = [reverse_dictionary[i] for i in range(1, num_points + 1)] plot(two_d_embeddings, words)
与skip-gram的区别无非是输入的不同而已,在skip-gram中,输入是一个向量;而在CBOW输入是多个向量:
train_dataset = tf.placeholder(tf.int32, shape=[batch_size, bag_window * 2]) ... embeds = tf.nn.embedding_lookup(embeddings, train_dataset)
在输入softmax的时候进行了一次求和,得到单个向量:
loss = tf.reduce_mean( tf.nn.sampled_softmax_loss(softmax_weights, softmax_biases, tf.reduce_sum(embeds, 1), train_labels, num_sampled, vocabulary_size))
可视化
CBOW得到
直观上CBOW似乎要好一些。
Reference
https://github.com/Arn-O/udacity-deep-learning/blob/master/5_word2vec.ipynb
纠正一个错误蛤,这里的word2vec中负采样是考虑到了词频的。sampled_softmax_loss中就又实现。
谢谢博主发布的这篇文章。感觉udacity上的教程讲到这里太模糊了。有一个疑问望不吝赐教。就是在产生数据集的时候,源码中的num_skips和skip_window是在干嘛?不太明白这样产生训练数据的意义是什么。。