目录
练习:卷积神经网络
概述
在这次练习中,将实现用于手写数字识别的卷积神经网络。网络结构为一个卷积池化层,后面跟一个全连接层,最后是一个softmax层。池化层使用平均池化。训练时使用反向传播、随机梯度下降和动量更新。
第0步:初始化参数、加载数据
%% STEP 0: Initialize Parameters and Load Data
% Here we initialize some parameters used for the exercise.
% Configuration
imageDim = 28;
numClasses = 10; % Number of classes (MNIST images fall into 10 classes)
filterDim = 9; % Filter size for conv layer
numFilters = 20; % Number of filters for conv layer
poolDim = 2; % Pooling dimension, (should divide imageDim-filterDim+1)
% Load MNIST Train
addpath ../common/;
images = loadMNISTImages('../common/train-images-idx3-ubyte');
images = reshape(images,imageDim,imageDim,[]);
labels = loadMNISTLabels('../common/train-labels-idx1-ubyte');
labels(labels==0) = 10; % Remap 0 to 10
% Initialize Parameters
theta = cnnInitParams(imageDim,filterDim,numFilters,poolDim,numClasses);
从参数可见,一共20个9×9的过滤器,池化区域大小2×2。加载的数据与前文相同。
第1步:实现CNN损失函数
网络一共两层,带平均池化的卷积层和全连接的softmax层,损失函数为10个分类上预测分布与实际分布的交叉熵。
前向传播
对每个图片执行每个过滤器(最好将激活值存下来,待会儿反向传播要用),然后平均响应以完成池化,这部分与前文类似。多说无益,直接看代码:
function [cost, grad, preds] = cnnCost(theta,images,labels,numClasses, filterDim,numFilters,poolDim,pred)
% Calcualte cost and gradient for a single layer convolutional
% neural network followed by a softmax layer with cross entropy
% objective.
%
% Parameters:
% theta - unrolled parameter vector
% images - stores images in imageDim x imageDim x numImges
% array
% numClasses - number of classes to predict
% filterDim - dimension of convolutional filter
% numFilters - number of convolutional filters
% poolDim - dimension of pooling area
% pred - boolean only forward propagate and return
% predictions
%
%
% Returns:
% cost - cross entropy cost
% grad - gradient with respect to theta (if pred==False)
% preds - list of predictions for each example (if pred==True)
if ~exist('pred','var')
pred = false;
end;
imageDim = size(images,1); % height/width of image
numImages = size(images,3); % number of images
lambda = 3e-3; % weight decay parameter %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Reshape parameters and setup gradient matrices
% Wc is filterDim x filterDim x numFilters parameter matrix
% bc is the corresponding bias
% Wd is numClasses x hiddenSize parameter matrix where hiddenSize
% is the number of output units from the convolutional layer
% bd is corresponding bias
[Wc, Wd, bc, bd] = cnnParamsToStack(theta,imageDim,filterDim,numFilters,...
poolDim,numClasses);
% Same sizes as Wc,Wd,bc,bd. Used to hold gradient w.r.t above params.
Wc_grad = zeros(size(Wc));
Wd_grad = zeros(size(Wd));
bc_grad = zeros(size(bc));
bd_grad = zeros(size(bd));
%%======================================================================
%% STEP 1a: Forward Propagation
% In this step you will forward propagate the input through the
% convolutional and subsampling (mean pooling) layers. You will then use
% the responses from the convolution and pooling layer as the input to a
% standard softmax layer.
%% Convolutional Layer
% For each image and each filter, convolve the image with the filter, add
% the bias and apply the sigmoid nonlinearity. Then subsample the
% convolved activations with mean pooling. Store the results of the
% convolution in activations and the results of the pooling in
% activationsPooled. You will need to save the convolved activations for
% backpropagation.
convDim = imageDim-filterDim+1; % dimension of convolved output
outputDim = (convDim)/poolDim; % dimension of subsampled output
% convDim x convDim x numFilters x numImages tensor for storing activations
activations = zeros(convDim,convDim,numFilters,numImages);
% outputDim x outputDim x numFilters x numImages tensor for storing
% subsampled activations
activationsPooled = zeros(outputDim,outputDim,numFilters,numImages);
%%% YOUR CODE HERE %%%
convolvedFeatures = cnnConvolve(filterDim, numFilters, images, Wc, bc);
activationsPooled = cnnPool(poolDim, convolvedFeatures);
% Reshape activations into 2-d matrix, hiddenSize x numImages,
% for Softmax layer
activationsPooled = reshape(activationsPooled,[],numImages);
%% Softmax Layer
% Forward propagate the pooled activations calculated above into a
% standard softmax layer. For your convenience we have reshaped
% activationPooled into a hiddenSize x numImages matrix. Store the
% results in probs.
% numClasses x numImages for storing probability that each image belongs to
% each class.
probs = zeros(numClasses,numImages);
%%% YOUR CODE HERE %%%
%Wd=(numClasses,hiddenSize)
M = Wd*activationsPooled+repmat(bd,[1,numImages]);
M = bsxfun(@minus,M,max(M,[],1));
M = exp(M);
probs = bsxfun(@rdivide, M, sum(M));
里面调用了一个cnnParamsToStack,作用是将一个unrolled的参数向量还原成weight矩阵和bias向量。
function [Wc, Wd, bc, bd] = cnnParamsToStack(theta,imageDim,filterDim,... numFilters,poolDim,numClasses) % Converts unrolled parameters for a single layer convolutional neural % network followed by a softmax layer into structured weight % tensors/matrices and corresponding biases % % Parameters: % theta - unrolled parameter vectore % imageDim - height/width of image % filterDim - dimension of convolutional filter % numFilters - number of convolutional filters % poolDim - dimension of pooling area % numClasses - number of classes to predict % % % Returns: % Wc - filterDim x filterDim x numFilters parameter matrix % Wd - numClasses x hiddenSize parameter matrix, hiddenSize is % calculated as numFilters*((imageDim-filterDim+1)/poolDim)^2 % bc - bias for convolution layer of size numFilters x 1 % bd - bias for dense layer of size hiddenSize x 1
只要记住c是convolution的缩写,d是dense的缩写就行了。
接着利用上次练习写的两个函数做卷积和池化:
%%% YOUR CODE HERE %%% convolvedFeatures = cnnConvolve(filterDim, numFilters, images, Wc, bc); activationsPooled = cnnPool(poolDim, convolvedFeatures);
接着前向传播到隐藏层,做softmax:
%%% YOUR CODE HERE %%% %Wd=(numClasses,hiddenSize) M = Wd*activationsPooled+repmat(bd,[1,numImages]); M = bsxfun(@minus,M,max(M,[],1)); M = exp(M); probs = bsxfun(@rdivide, M, sum(M));
这里的
M = bsxfun(@minus,M,max(M,[],1));
是为了避免浮点数溢出的小trick。
计算损失函数
真实标签的分布可以通过matlab的sparse快速统计:
%%====================================================================== %% STEP 1b: Calculate Cost % In this step you will use the labels given as input and the probs % calculate above to evaluate the cross entropy objective. Store your % results in cost. cost = 0; % save objective into cost %%% YOUR CODE HERE %%% groundTruth = full(sparse(labels, 1:numImages, 1)); cost = -1./numImages*groundTruth(:)'*log(probs(:))+(lambda/2.)*(sum(Wd(:).^2)+sum(Wc(:).^2)); % % Makes predictions given probs and returns without backproagating errors. if pred [~,preds] = max(probs,[],1); preds = preds'; grad = 0; return; end;
这里计算的是regularized cross-entropy:
$\begin{eqnarray} C = -\frac{1}{n} \sum_{xj} \left[ y_j \ln a^L_j+(1-y_j) \ln
(1-a^L_j)\right] + \frac{\lambda}{2n} \sum_w w^2\end{eqnarray}$
反向传播
计算损失函数在全连接层的误差$\delta_d$,然后将误差反向传播到subsample->卷积层。可利用matlab的kron函数来upsample误差。
假设在4×4的图片上执行2×2的池化,那么反向传播时抵达池化层的误差为2×2,需要将其upsample到4×4。由于使用了平均池化,来自输入层单元的每个输入平均地为池化层贡献误差,也就是说只要复制拓展一下这些元素并平均即可。比如当池化层的误差为
$$delta =
\begin{pmatrix}
1 & 2 \\
3 & 4 \\
\end{pmatrix}$$
调用kron(delta, ones(2,2)),该函数对2×2的delta每个位置的元素乘以全1矩阵,得到4×4的矩阵:
$$
\text{kron} \left(
\begin{pmatrix}
1 & 2 \\
3 & 4 \\
\end{pmatrix}
,
\begin{pmatrix}
1 & 1 \\
1 & 1 \\
\end{pmatrix}
\right)
\rightarrow
\begin{pmatrix}
1 & 1 & 2 & 2 \\
1 & 1 & 2 & 2 \\
3 & 3 & 4 & 4 \\
3 & 3 & 4 & 4
\end{pmatrix}
$$
upsample之后,剩下的工作就是将该矩阵除以卷积核的大小:
% Upsample the incoming error using krondelta_pool = (1/poolDim^2) * kron(delta,ones(poolDim));
只有这样做了,才能保证upsample前后矩阵元素之和相等。
梯度计算
使用全连接网络的梯度计算公式计算全连接层的梯度:
$$ \begin{align} \nabla_{W^{(l)}} J(W,b;x,y) &= \delta^{(l+1)} (a^{(l)})^T+\lambda W, \\ \nabla_{b^{(l)}} J(W,b;x,y) &= \delta^{(l+1)}. \end{align} $$
% images--> convolvedFeatures--> activationsPooled--> probs % Wd = (numClasses,hiddenSize) % bd = (hiddenSize,1) % Wc = (filterDim,filterDim,numFilters) % bc = (numFilters,1) % activationsPooled = zeros(outputDim,outputDim,numFilters,numImages); % convolvedFeatures = (convDim,convDim,numFilters,numImages) % images(imageDim,imageDim,numImges) delta_d = -(groundTruth-probs); % softmax layer's preactivation Wd_grad = (1./numImages)*delta_d*activationsPooled'+lambda*Wd; bd_grad = (1./numImages)*sum(delta_d,2);
全连接层的误差反向传播到subsampling层,只需要乘以$W_d$:
delta_s = Wd'*delta_d; %the pooling/sample layer's preactivation delta_s = reshape(delta_s,outputDim,outputDim,numFilters,numImages);
对卷积层,需要先对误差upsample:
delta_c = zeros(convDim,convDim,numFilters,numImages); for i=1:numImages for j=1:numFilters delta_c(:,:,j,i) = (1./poolDim^2)*kron(squeeze(delta_s(:,:,j,i)), ones(poolDim)); end end delta_c = convolvedFeatures.*(1-convolvedFeatures).*delta_c;
最后一行是在乘以sigmoid的导数,也就是$\textstyle f'(z^{(l)}_i) = a^{(l)}_i (1- a^{(l)}_i)$
然后对某个特定的过滤器,其权值梯度为对卷积层的误差项与原图片执行卷积的结果之和:
for i=1:numFilters Wc_i = zeros(filterDim,filterDim); for j=1:numImages Wc_i = Wc_i+conv2(squeeze(images(:,:,j)),rot90(squeeze(delta_c(:,:,i,j)),2),'valid'); end % Wc_i = convn(images,rot180(squeeze(delta_c(:,:,i,:))),'valid'); % add penalize Wc_grad(:,:,i) = (1./numImages)*Wc_i+lambda*Wc(:,:,i); bc_i = delta_c(:,:,i,:); bc_i = bc_i(:); bc_grad(i) = sum(bc_i)/numImages; end
bias的梯度是既定过滤器的所有误差项之和,当然还要除以训练图片的数量。
第2步:检查梯度
将DEBUG设为true可以利用computeNumericalGradient函数检查损失函数和梯度的正确性。
第3步:学习参数
使用随机梯度下降和动量更新算法,其中学习率更新采用一种启发式的算法,即简单地在每次迭代后将学习率减半。
function [opttheta] = minFuncSGD(funObj,theta,data,labels, options)
% Runs stochastic gradient descent with momentum to optimize the
% parameters for the given objective.
%
% Parameters:
% funObj - function handle which accepts as input theta,
% data, labels and returns cost and gradient w.r.t
% to theta.
% theta - unrolled parameter vector
% data - stores data in m x n x numExamples tensor
% labels - corresponding labels in numExamples x 1 vector
% options - struct to store specific options for optimization
%
% Returns:
% opttheta - optimized parameter vector
%
% Options (* required)
% epochs* - number of epochs through data
% alpha* - initial learning rate
% minibatch* - size of minibatch
% momentum - momentum constant, defualts to 0.9
%%======================================================================
%% Setup
assert(all(isfield(options,{'epochs','alpha','minibatch'})), 'Some options not defined');
if ~isfield(options,'momentum')
options.momentum = 0.9;
end;
epochs = options.epochs;
alpha = options.alpha;
minibatch = options.minibatch;
m = length(labels); % training set size
% Setup for momentum
mom = 0.5;
momIncrease = 20;
velocity = zeros(size(theta));
%%======================================================================
%% SGD loop
it = 0;
for e = 1:epochs
% randomly permute indices of data for quick minibatch sampling
rp = randperm(m);
for s = 1:minibatch:(m-minibatch+1)
it = it + 1;
% increase momentum after momIncrease iterations
if it == momIncrease
mom = options.momentum;
end;
% get next randomly selected minibatch
mb_data = data(:,:,rp(s:s+minibatch-1));
mb_labels = labels(rp(s:s+minibatch-1));
% evaluate the objective function on the next minibatch
[cost grad] = funObj(theta,mb_data,mb_labels);
% Instructions: Add in the weighted velocity vector to the
% gradient evaluated above scaled by the learning rate.
% Then update the current weights theta according to the
% sgd update rule
%%% YOUR CODE HERE %%%
velocity = velocity* mom + alpha*grad;
theta = theta - velocity;
fprintf('Epoch %d: Cost on iteration %d is %f\n',e,it,cost);
end;
% aneal learning rate by factor of two after each epoch
alpha = alpha/2.0;
end;
opttheta = theta;
end
没什么好说的,很简单的公式:
$$\begin{align}v &= \gamma v+ \alpha \nabla_{\theta} J(\theta; x^{(i)},y^{(i)}) \\\theta &= \theta -
v\end{align}$$
第4步:测试
最终结果
Epoch 3: Cost on iteration 700 is 0.130076 Epoch 3: Cost on iteration 701 is 0.130717 Epoch 3: Cost on iteration 702 is 0.108138 Accuracy is 0.985000
Reference
https://github.com/hankcs/stanford_dl_ex
http://www.cs.ucf.edu/~mtappen/cap5415/lecs/lec1.pdf
码农场
楼主,你好!请问你这“文章侧边栏快速定位“和“文档中的公式“是使用的哪款插件啊
写的真心不错,努力向你学习
师兄,忽略博文情景问下吼,目前基于深度学习的日语机器翻译进展得如何了?/滑稽
我也不了解这个领域