放牧代码和思想
专注自然语言处理、机器学习算法
    时间有限,只有GitHub上的issue能及时处理。另外,不要叫我楼主,谢谢。

机器学习

第3页
隐马尔可夫模型

隐马尔可夫模型

hankcs阅读(717)评论(1)

本文是《统计学习方法》第10章的笔记,用一段167行的Python代码实现了隐马模型观测序列的生成、前向后向算法、Baum-Welch无监督训练、维特比算法。公式与代码相互对照,循序渐进。 HMM算是个特别常见的模型,早在我没有挖ML这个坑...

EM算法及其推广

EM算法及其推广

hankcs阅读(985)评论(5)

本文是《统计学习方法》第九章的笔记,注解了原著的部分公式推导,补充了另一个经典的双硬币模型,并且注释了一份数十行的EM算法Python简明实现。 如果概率模型的变量都是观测变量(数据中可见的变量),则可以直接用极大似然估计,或者用贝叶斯估计...

提升方法

提升方法

hankcs阅读(605)评论(1)

本文是《统计学习方法》第8章提升方法的笔记,整合了《机器学习实战》中的提升树Python代码,并添加了注解和PR值计算代码。《方法》重理论,但不易理解,《实战》重实践,但缺乏理论基础,特别是AdaBoost算法的解释、提升树与加法模型的关系...

libsvm使用说明

libsvm使用说明

hankcs阅读(1097)评论(1)

本文记录了libsvm的使用方法、参数说明、数据格式、模型格式,并且对数据标准化和自动寻参等,做了整理。对libsvm的Java代码,整理成了Maven结构,注释了主要接口。本来准备完整地将libsvm源码剖析一遍的,后来太忙顾不上了,连这...

支持向量机

支持向量机

hankcs阅读(1196)评论(3)

本文是《统计学习方法》第七章《支持向量机》的笔记,附带了少量注解和背景知识的补充;后半部分将《机器学习实战》支持向量机的Python代码加以整理注释,与公式放到一起形成对照,辅助理解。私以为,没有泛函分析基础的人是无法深刻理解支持向量机的,...

反向传播神经网络极简入门

反向传播神经网络极简入门

hankcs阅读(2022)评论(23)

我一直在找一份简明的神经网络入门,然而在中文圈里并没有找到。直到我看到了这份162行的Python实现,以及对应的油管视频之后,我才觉得这就是我需要的极简入门资料。这份极简入门笔记不需要突触的图片做装饰,也不需要赘述神经网络的发展历史;要推...

拉格朗日对偶性

拉格朗日对偶性

hankcs阅读(1125)评论(4)

在看《统计学习方法》支持向量机一章的时候,看到“应用拉格朗日对偶性(参阅附录C),通过求解对偶问题得到原始问题的最优解”一句,于是往下递归学习了一下附录C的拉格朗日对偶性。名曰学习,实则是摘抄,加入了少量个人理解与背景补充。毕竟定理和推论看...

逻辑斯谛回归与最大熵模型

逻辑斯谛回归与最大熵模型

hankcs阅读(1418)评论(2)

本文希望通过《统计学习方法》 第六章的学习,由表及里地系统学习最大熵模型。文中使用Python实现了逻辑斯谛回归模型的3种梯度下降最优化算法,并制作了可视化动画。针对最大熵,提供一份简明的GIS最优化算法实现,并注解了一个IIS最...

决策树

决策树

hankcs阅读(3941)评论(3)

   “何以别离久,何以少团栾。” 本文对应《统计学习方法》 第5章,用Python实现了决策树的ID3生成算法和C4.5生成算法,并用matplotlib可视化出来。 决策树模型与学习 决策树模型 分类决策树模型是一种...

朴素贝叶斯法

朴素贝叶斯法

hankcs阅读(2999)评论(8)

本文是《统计学习方法》第4章的笔记,用图形补充说明了条件概率分布计算时可能引发的维数灾难,在文末用Python实现了一个基于贝叶斯文本分类器的简单情感极性分析器,可以分析中文句子的情感极性。 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的...

我的开源项目

HanLP自然语言处理包基于DoubleArrayTrie的Aho Corasick自动机